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Summary

The backbone dynamics of uniformly 13C/15N-enriched ribonuclease T1 have been investigated using
carbonyl carbon relaxation times recorded at three different spectrometer frequencies. Pulse sequences
for the determination of the longitudinal (T1) and transverse (T2) relaxation times are presented. The
relaxation behaviour was analysed in terms of a multispin system. Although the chemical shift aniso-
tropy relaxation mechanism dominates at high magnetic field strength, the contributions of the dipole–
dipole interactions and the cross-correlation between these two relaxation mechanisms have also been
considered. Information about internal motions has been extracted from the relaxation data using the
model-free approach of Lipari and Szabo in order to determine order parameters (S2) and effective
internal correlation times (τi). Using a relatively simple relation between the measured relaxation rates
and the spectral density function, an analytical expression for the microdynamical parameters in depend-
ence of T1 and T2 has been derived. The spectral density mapping technique has been applied in order
to study the behaviour of the carbonyl carbon resonances in more detail.

Introduction
0

Recent advances in multidimensional NMR spectro-
scopy together with isotopic enrichment techniques have
enabled essentially complete assignments of proton and
heteronuclei (15N and 13C) resonances in proteins of a
molecular mass up to 30 kDa (Grzesiek et al., 1992; Ya-
mazaki et al., 1993; Fogh et al., 1995). The NOE-derived
distance constraints together with homo- and heteronu-
clear coupling constants have permitted the first detailed
studies of the solution structures of such proteins. For a
complete description, knowledge of the dynamic prop-
erties of proteins also seems necessary. These parameters
can be obtained by NMR relaxation experiments for
certain time windows. In the past few years a significant
number of studies have appeared in the literature describ-
ing the backbone dynamics of a wide variety of uniformly

15N-labelled proteins based on measurements of 15N T1

and T2 relaxation times as well as the steady-state 1H-15N
NOE values (Kay et al., 1989; Clore et al., 1990a,b; Bar-
bato et al., 1992; Fushman et al., 1994). The analysis of
the relaxation data using a suitable model of motion
provides dynamical parameters of the motion of the N-H
bond. Since a typical property of protein structures is the
planarity of the peptide plane, the motion of the N-H
bond should be highly correlated with the motion of the
C=O bond. Therefore, it should also be possible to study
the dynamics of the peptide plane using carbonyl relax-
ation times. This way has, in contrast to 15N relaxation
time measurements, three major advantages: no artefacts
arise due to HN exchange with water protons; further-
more, proline residues are detectable and, as shown be-
low, the relation between the measured relaxation times
and the spectral density function is relatively simple.
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The measurement and interpretation of 13C' relaxation
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Fig. 1. Pulse sequences used for the measurement of 13C' T1 (A) and T2 (B) values with 1H detection. Narrow and broad rectangles indicate pulses
with flip angles of 90° and 180°, respectively. Pulses for which the phase is not indicated were applied along the x-axis. Spin-lock (sl) 1H pulses
with durations of 2 ms and 1 ms are applied along the x- and y-axis, respectively, to suppress the residual water signal and magnetization
originating from protons not directly coupled to 13C. The carrier frequency in the 13C channel was switched between the 90° 13C pulses Φ5 and
Φ6 from the 13Cα region (56 ppm) to the carbonyl carbon region (177 ppm) and back between Φ7 and Φ1. The power of the 90° and 180° 13Cα

pulses was adjusted such that they did not excite the 13C' nuclei (τ90 = √15/(4∆Ω) and τ180 = √3/(2∆Ω) with ∆Ω = 15.2 kHz (500 MHz), 18.3 kHz (600
MHz) and 24.3 kHz (800 MHz)). The off-resonance 13Cα pulses had a square shape and their rf field strength was adjusted to γB1 = ∆Ω/√3. Sinc-
shaped phase-modulated off-resonance DANTE pulses with an rf field strength of 2500 Hz (500 MHz, 600 MHz) and 3300 Hz (800 MHz) were
used to excite the carbonyl carbons downfield from the 13C carrier. The 13C pulses for the carbonyl absorption region were tuned to a value of
γB1=∆Ω/√15 such that the 13Cα carbons were not affected. 1H and 15N decoupling was accomplished using WALTZ-16 with a field of 3200 Hz and
a 900 Hz rf field, respectively. 13Cα decoupling during acquisition was achieved using the GARP modulation with a field strength of 3.2 kHz. Delay
durations were: τ = 1.7 ms, δ = 3.4 ms, ε = 3.6 ms, η = 4.5 ms, t1

a = 4.5 ms, t1
b = 4 µs, tc

1 = 4.5 ms. The phase cycling used was as follows: Φ1 = y;
Φ2 = x,−x; Φ4 = 8(x),8(−x); Φ5 = 4(x),4(−x); Φ6 = 2(x),2(−x); for a, Φ3 = 16(x),16(y),16(−x),16(−y); Φ7 = x,−x; Φ8 = 8(y+40°),8(−y+40°) (Bloch–Siegert
phase error compensation); acq. = P,−P,−P,P,−P,P,P,−P with P = (x,x,−x,−x); for b, Φ3 = 8(x),8(y),8(−x),8(−y); Φ7 = (x+40°,−x+40°); Φ8 = 4(x),4(−x);
acq. = P,−P,−P,P with P = (x,x,−x,−x). Quadrature detection is achieved by TPPI of Φ6 for scheme A and Φ7 for scheme B.

times in highly enriched, uniformly 13C/15N-labelled pro-
teins are not as straightforward as for 15N relaxation times
(Yamazaki et al., 1994; Engelke and Rüterjans, 1995). In
order to use the advantage of sensitivity enhancement
associated with proton-detected experiments, the magneti-
zation has to be transferred from the 1Hα to the carbonyl
carbon and back in an HCACO-type experiment (Kay et
al., 1990; Powers et al., 1991). During the transverse
relaxation period, the presence of the scalar coupling
between 13Cα and 13C' may induce relaxation of the second
kind, unless precaution is taken. In addition, the type of
relaxation mechanism has to be considered. The nuclear
spin relaxation of the amide nitrogen in a 15N-labelled
protein stems mainly from the dipole–dipole interaction
between the amide nitrogen and its directly bound hydro-
gen. A minor part of the relaxation is caused by the 15N
chemical shift anisotropy (CSA). In this case the amide
15N-1H pair is an isolated AX-spin system. In a complete-

ly 13C/15N-labelled protein the 13C' nucleus is surrounded
by several other nuclei with a nuclear spin and therefore
CSA and various dipole–dipole interactions contribute to
its relaxation. This environment implies that, for a realis-
tic interpretation of the carbonyl carbon relaxation times,
a detailed analysis of the relative contributions of all
possible relaxation mechanisms is necessary.

For the analysis the relaxation rates of a particular
backbone carbonyl nucleus are related to its spectral den-
sity function. The most common approach to extract in-
formation about dynamics from relaxation parameters is
using the model-free spectral density function described by
Lipari and Szabo (1982). In our study we also apply this
procedure as a ‘first level approach’. While this method
is very powerful for extracting dynamical parameters
from 15N relaxation data, its applicability to carbonyl
carbon relaxation data is less certain. Therefore, we have
chosen to obtain further proof for this analysis by map-
ping the spectral density function (‘second level approach’)
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(Peng and Wagner, 1992) using relaxation rates from
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Fig. 2. First 1Hα-13C' correlation spectrum from a series for T1 relaxation time measurements at 600 MHz. Cross-peak assignments are indicated
with the one-letter amino acid code and the residue number. The horizontal lines indicate the correlations between the glycine protons.

three different spectrometer frequencies.

Materials and Methods

NMR spectrometers and sample preparation
The NMR experiments were performed on Bruker

DMX500, DMX600 and DMX800 spectrometers, equip-
ped with triple-resonance 15N/13C/1H probe heads, operat-
ing at 308 K. Uniformly 15N/13C-enriched ribonuclease T1
(RNase T1) was dissolved in 99.99% D2O to a final con-
centration of 2.2 mM, the pH being adjusted to 5.5.

Pulse sequences used to determine carbonyl relaxation
times

For studying the backbone dynamics of proteins with
13Cα, 13C' and 15N relaxation times, the use of only one
sample of a uniformly 13C/15N-enriched protein dissolved in
H2O would be reasonable. For uniformly enriched samples

the application of pulse sequences using an HNCO type
instead of the HCACO type of magnetization transfer
would be preferable (Dayie and Wagner, 1995; Zeng et
al., 1996). Nevertheless, we used the latter one, since the
13Cα relaxation times were determined with a sample in
D2O separately, the contribution of the dipole–dipole
interaction between 13C' and HN to the relaxation of the
carbonyl carbon does not have to be considered (see
below), and furthermore we wanted to extend our investi-
gations to the carbonyl and carboxyl resonances of the
side chains of asparagine, glutamine, aspartic and glu-
tamic acid residues. Figures 1A and B illustrate the pulse
schemes used for recording the 13C' T1 (A) and T2 (B)
relaxation times in more than 95% enriched, uniformly
13C/15N-labelled RNase T1.

The experiments are based on magnetization transfer
in an HCACO manner, yielding two-dimensional spectra
with a carbonyl carbon dimension in F1 and a 1Hα dimen-
sion in F2. The details of this type of correlation have been



66

reported by Grzesiek and Bax (1993), and only a brief de-
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Fig. 3. Experimental and calculated intensity decay curves for the longitudinal (A) and transverse (B) relaxation of 13C' of Leu86 at 500, 600 and
800 MHz.

scription of the modifications with respect to the original
pulse sequence is given, which is necessary for the deter-
mination of carbonyl relaxation times. The initial INEPT
sequence transfers longitudinal 1Hα magnetization into
antiphase 13Cα magnetization at a (Fig. 1A). During the
delay 2ε, antiphase magnetization of 13Cα with respect to
the carbonyl is produced with simultaneous refocusing of
1Hα-13Cα antiphase magnetization and synchronous proton
decoupling. Simultaneous 90° pulses on 13Cα and 13C'
channels result in an INEPT-type transfer, with 13C' mag-
netization now transverse and antiphase with respect to
13Cα (b in Fig. 1A). Subsequently, 13C' magnetization
evolves during the semi-constant-time t1 delay (t1 = t1

a+t1
b−tc

1),
with refocusing of antiphase magnetization occurring for

a duration of t1
a−t1

b+tc
1 = 1/2JCαC', such that at c in the pulse

sequence the signal is in phase. During the following
period between c and d a specific pulse scheme is applied
depending on whether the longitudinal relaxation times
(Fig. 1A) or the transverse relaxation times (Fig. 1B)
should be determined. In order to suppress cross-correla-
tion between CSA and 13C'-1Hα dipole–dipole relaxation,
180° 1H pulses are applied during the relaxation delay
(Boyd et al., 1990). Finally the magnetization is trans-
ferred back to 1Hα by two successive INEPT transfers for
detection during t2.

In order to obtain T1 relaxation times, the inversion
recovery scheme is used between c and d (Fig. 1A). Phase
alternation of Φ10 is applied in order to store magnetiza-
tion along the +z- and −z-axis such that the magnetization
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may relax with exp(−t/T1). In this way a less optimal

C

O

N

H

Cα

δxx

δyy

δzz

X

Y

Z

Z

Fig. 4. Orientation of the peptide carbonyl 13C chemical shift tensor. The carbonyl group and the amide nitrogen are in approximately the same
plane. The X' and Y' principal axes of the CSA tensor have been located in this plane and form angles of 77° and 13°, respectively, with the CO
bond. The direction of Z' is located perpendicular to this plane. The values of the angle θ between the 13C'-13Cα bond (Z-axes) and the X', Y' and
Z' axes are given by: θ'X Z = 197°, θ'Y Z = 107° and θ'Z Z = 90°. The values of the principal axes of the CSA tensor used in this calculation were: δxx =
−115.6 ppm, δyy = −48.6 ppm and δzz = +40.6 ppm (Stark et al., 1983).

delay between scans will only affect the sensitivity of the
experiment without introducing systematic errors (Sklenář
et al., 1987). Series of seven 2D spectra were recorded
with T delays of 2, 150, 300, 450, 600, 900 and 1200 ms.
The measuring time varied between 5 and 11 h for each
spectrum, depending on the T delay.

For measuring the transverse relaxation times, we
applied a spin-lock pulse (T1ρ). For its rf field strength a
value of 3000 Hz was used, providing a tip angle between
78° and 90° for all 13C' resonances at 600 MHz. This
results in a maximal difference of 5% between the T1ρ and
T2 values (Peng and Wagner, 1992). In order to ensure
that in each increment at the beginning of the transverse
relaxation period the carbonyl magnetization is on the +x-
or −x-axis, the t1 evolution period is placed behind the
relaxation period. Series of seven or eight 2D spectra
were acquired in approximately 5 h with T delays of 2.4,
7.2, 14.4, 24, 43.2, 64.8, 96 and 120 ms.

Data evaluation
The data sets were recorded as 180 × 1024 (500 MHz),

220 × 1024 (600 MHz) and 288 × 1024 (800 MHz) real
matrices with 64 scans for each t1 value and a spectral
width of 11 ppm in F1 and 5 ppm in F2. Apodization,
zero-filling and Fourier transformation led to a digital
resolution of 2.2 Hz/point in F1 and 1.9 Hz/point in the
F2 dimension. The spectra were processed and analysed
on a Silicon Graphics workstation using the UXNMR
and AURELIA programs (Bruker Analytische Messtech-
nik GmbH, Karlsruhe, Germany).

Figure 2 shows the first spectrum out of the series of
2D spectra for measuring T1. For the assignment of the
1Hα and the 13C' resonances in RNase T1, standard triple-
resonance experiments carried out in H2O and D2O were
used (Pfeiffer et al., 1996). In the present work, 84 (500

MHz) and 94 (600 MHz, 800 MHz) of the 104 cross
peaks were sufficiently well resolved such that they could
be considered during the data analysis.

For the evaluation of relaxation times, the intensities
of corresponding resonances in this series of 2D spectra
were fitted to a single exponential, depending on the
relaxation delay. The fit was performed using a least-
squares minimization procedure based on a downhill-
simplex algorithm (Press et al., 1988) and the margin of
errors was determined by a Monte Carlo approach using
the method of simulated experimental data (Kamath and
Shriver, 1989). Typical decay curves as well as their best
fits are shown in Fig. 3.

Relaxation properties of the carbonyl carbon reso-
nance

In a uniformly 13C/15N-labelled protein, various differ-
ent spins are located in the vicinity of the 13C' spin such
that the analysis of its relaxation behaviour is more com-
plicated than for the backbone 15N. At high magnetic field
strength the relaxation of the protein peptide carbonyl
carbon is dominated by the chemical shift anisotropy
(CSA) relaxation, although the contributions of the vari-
ous dipole–dipole interactions between the 13C' spin and
the adjacent spins may not be neglected a priori. The
relevant expressions for the CSA relaxation are (Abra-
gam, 1961; Goldman, 1984):

(1/T1)CSA = ρ1
CSA = d2

CSAω2
CJC'(ωC) (1a)

(1/T2)CSA = ρ2
CSA = (d2

CSAω2
C / 6) [4JC'(0) + 3JC'(ωC)] (1b)

where

d2
CSA = (1/3)∆δ2 [1 + ξ2

CSA/3] (2)
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with ∆δ = δzz−(1/2)(δxx+δyy), ξCSA = (δxx−δyy)/(δzz−δ0) and δ0 = TABLE 1
DIPOLE–DIPOLE INTERACTION CONSTANT c2

AB FOR THE
INTERACTIONS BETWEEN THE 13C' CARBON AND THE
ADJACENT NUCLEI

Interacting nuclei Distance r (Å) c2
AB (109 s−2)

C'-Cα 1.53 0.044
C'-Cβ 2.51 0.002
C'-Hα 2.17 0.086
C'-N 1.32 0.017
C'-HN a 2.03 0.129

The following values are assumed: h = 6.626 × 10−34 J s, µ0 = 4π × 10−7

T mA, γH = 2.6752 × 108 s−1 T−1, γC = 6.728 × 107 s−1 T−1, γN = 2.709 × 107

s−1 T−1.
a This dipole–dipole interaction only has to be considered for an H2O

sample.
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Fig. 5. Experimental and calculated intensity decay curves for the longitudinal relaxation of the carbonyl carbon of Ser8 and Leu86 of ribonuclease
T1. The experimental data were fitted to a biexponential function of the form I = A1 exp(−T/T1f)+A2 exp(−T/T1s), where T is the relaxation delay.
In order to show the biexponential decay more explicitly, the ordinate scale is logarithmic.

(1/3)(δxx+δyy+δzz). Note that, in contrast to the 15N chemi-
cal shielding tensor, the assumption of an axially symmet-
rical shift tensor for the carbonyl carbon cannot be used
(Stark et al., 1983). In Eqs. 1 and 2, δii are the diagonal
elements of the chemical shift tensor defined in Fig. 4, ωC

is the resonance frequency of the carbon nucleus and J(ω)
is the corresponding spectral density function. Since ex-
perimental values for the components of the chemical shift
tensor of protein carbonyl carbons in solution are not yet
available, we had to take advantage of previous results
from solid-state investigations of smaller peptides. Stark
et al. (1983) investigated the carbonyl shielding tensor in
a single crystal of the dipeptide [1-13C]glycyl[15N]glycine.
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They determined a value of 6.2 × 10−9 for d2
CSA. Ye et al. [ ( ) ( )
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Fig. 6. Theoretical longitudinal (A, B) and transverse (C, D) relaxation rates of 13C' as a function of the isotropic correlation time τc and the
spectrometer frequencies. Values for the CSA relaxation rate ρCSA, the dipole–dipole relaxation rate ρC' Cα, ρDD and the relaxation due to the cross-
correlation ρcross are indicated. In order to describe the motion of the CSA tensor, the spectral density function of Lipari and Szabo with an internal
correlation time τi of 350 ps was used in this calculation.

(1993) measured the tensor components of the carbonyl
carbon of polycrystalline powders of 20 amino acids by
CP/MAS spectroscopy, and the d2

CSA value for glycine
calculated from these data was 4.9 x 10−9. This difference
of about 25% seems to be an indication that the value of
d2

CSA depends strongly on the sample and the experimental
conditions. Therefore, it is open to question as to whether
these values obtained from peptides in the solid state can
be applied to carbonyl carbons of proteins in solution.
Furthermore, it is not clear whether the same d2

CSA value
can be applied to all types of amino acids. Indeed, this is
a critical point in the analysis. Nevertheless, in order to
start with a first attempt in our analysis we decided to use
a d2

CSA value of 6.2 × 10−9 for all amino acid types.
The contribution of the various dipole–dipole interac-

tions between the 13C' spin and the adjacent spins will
now be analysed in detail. In the case of random isotropic
molecular reorientation, the following expressions for an
individual 13C carbonyl carbon in the absence of cross-
relaxation (see below) may be written (Abragam, 1961;
Bull, 1992):

where

N is the number of spins X (X = 1H, 13C, 15N) responsible
for dipole–dipole relaxation, JC'X(ω) characterizes the
motion of the two interacting spins, h is Planck’s con-
stant, 〈rC'X〉 is the distance between the carbonyl carbon
and the X nucleus responsible for relaxation, and γC and
γX are the gyromagnetic ratios of the carbon spin and the
X spin, respectively. In general, all spins in a protein



70

000000contribute to the relaxation of an individual 13C carbonyl
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carbon, but the contribution of most of these spins can be
neglected because of their large distance. For the few
spins close enough to the carbonyl carbon, the values of
c2

C'X are listed in Table 1.
For the relaxation time T1, only the homonuclear 13Cα-

13C' interaction which is proportional to J(0) has to be
considered. In proteins, J(0) is much larger than J(ωC)
and consequently the product c2

C'CαJ(0) becomes compar-
able to the product d2

CSAω2
CJ(ωC). Since the other dipole–

dipole interactions between the carbonyl carbon and the
15N, 1Hα and 13Cβ nuclei are heteronuclear and thus pro-
portional to J(ωC), the relation of their relaxation contri-
butions to the contribution due to CSA relaxation is
given with a good approximation by 3∑c2

AB/d2ω2. When
the protein is dissolved in D2O this relation amounts to
8% for 500 MHz, 6% for 600 MHz and 3% for 800 MHz,
while for an H2O protein sample these contributions are
more than twice as large. Since a D2O protein sample is
used in this study, it seems reasonable to neglect these con-
tributions, particularly for high magnetic field strengths.
Since the contribution of the cross-relaxation between the
13C' and the 13Cα leads to a cross peak at the 1Hα-13Cα fre-
quency (Engelke and Rüterjans, 1995), it does not influ-
ence the intensity of the 1Hα-13C' cross-peak intensity on
which the determination of the T1 relaxation time is
based.

In the case of T2 relaxation times, the CSA and all
dipole–dipole interactions are proportional to J(0) and
hence we have to consider the CSA relaxation and, for a
D2O protein sample, the contributions of the 13C'-13Cα and
13C'-1Hα interactions. The contribution of the dipolar inter-
action between the carbonyl carbon and the 15N and 13Cβ

nuclei is in the range of 1–2% and therefore negligible.
In addition, a third relaxation mechanism has to be

discussed. It originates from the cross-correlation between
CSA and dipolar 13C'-13Cα relaxation. This contribution
accelerates or reduces the relaxation of the carbonyl car-
bon, depending on whether the adjacent 13Cα spin is up or
down (Goldman, 1984; Bull, 1992), according to:

(1/T1)cross = ρ1
cross = ± 2cC'CαωCαJC'Cα(ωC) (5a)

(1/T2)cross = ρ2
cross = ± cC'CαωCα[(4/3)JC'Cα(0) + JC'Cα(ωC)] (5b)

with α = (1/2)[δxx(3cos2θX'Z − 1) + δyy(3cos2θY'Z −1) + δzz ×
(3cos2θZ'Z − 1)]. The values and the meaning of δ and θ
are demonstrated in Fig. 4. The decay of the longitudinal
0and transverse magnetization is biexponential and the
ratio of these two relaxation rates amounts to approxi-
mately 1.4 (600 MHz, τc = 4.9 ns). Clearly, this effect can
result in higher values of the measured relaxation rates if
not properly accounted for in the interpretation of the
relaxation data or if not adequately suppressed. In order
to verify this relaxation contribution experimentally, we

recorded a series of T1 with additional delays of 1.5 and
2.2 s for T. As an example, the biexponential decay of T1

as well as their best fits for Ser8 and Leu86 are shown in
Fig. 5. The relation of 1.32 and 1.30 between the two
relaxation rates agrees quite well with the theoretical con-
siderations.

In the case of 15N relaxation time measurements, this
relaxation mechanism is suppressed by applying 180° pro-
ton pulses during the relaxation period (Boyd et al., 1990;
Kay et al., 1992). We tried to use this technique as well
by applying G3 pulses to the 13Cα carbon, but the errors
in the exponential decays increased. This may be due to
an imperfect selectivity of the G3 pulses and the fact that
the number of such pulses depends on the length of the
relaxation period T. An additional problem arises from
Bloch–Siegert shifts in the case of measuring T1ρ. There-
fore, we decided to evaluate the relaxation rates from the
initial T delays and take this relaxation mechanism into
account while calculating the microdynamical parameters.
Since the dipolar interaction constant c2

C'N is very small,
the contribution of the cross correlation between the CSA
relaxation of the carbonyl carbon and the dipolar 13C'-15N
interaction can be neglected.

Certainly, also the contribution of conformational
exchange Rex has to be taken into account for some resi-
dues, so that the total relaxation rates are given by:0

Figure 6 shows the contribution of ρCSA, ρC'Cα, ρDD and
ρcross to the longitudinal and transverse relaxation of the
carbonyl carbon. For the longitudinal relaxation time, it
is obvious that a simplification of Eq. 6a by omitting
ρCSA, ρC'Cα or ρcross is not possible, because these contribu-
tions are all of comparable order in the range between 1
and 20 ns. Their relative contributions depend on τc: for
molecules with short correlation times the CSA relaxation
mechanism dominates, while for proteins with longer
rotational correlation times the contribution of ρC'Cα to T1
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increases steadily. In the case of the transverse relaxation
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Fig. 7. Contour plots of the calculated areas of S2 (A) and τi (B) in dependence of the longitudinal and transverse relaxation times at 600 MHz.
In this calculation the overall correlation time τc was assumed to be 4.9 ns. For the anisotropy constant d2

CSA, a value of 6.2 × 10−9 was derived from
Stark et al. (1983). The experimental data obtained for the residues of ribonuclease T1 are indicated with filled circles.

time, the contributions of ρDD and ρcross are certainly
smaller, but nevertheless they have to be considered.

Analysis of the relaxation times

In order to analyse the relaxation rates, we applied two
different approaches. At the first level the formalism of
Lipari and Szabo (1982) is used, and an analytical expres-
sion for the microdynamical parameters has been derived.
For this approach only two measured relaxation rates are
necessary and this procedure is applicable when the over-
all correlation time of the molecule is known. The second
level is more sophisticated. We mapped the spectral den-

sity function using six relaxation rates measured at three
different spectrometer frequencies. Furthermore, a value
for the conformational exchange can be extracted for
each residue.

First level approach
In order to derive dynamical parameters from the

measured relaxation times, it is necessary to choose a
suitable model of motion that describes the motion of the
carbonyl shielding tensor. In the present work this will be
achieved by using the ‘model-free approach’ formalism
introduced by Lipari and Szabo (1982), well known from
the analysis of 15N relaxation data. In this model J(ωi) is
expressed according to
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with τi
−1 = τc

−1+τe
−1, where τc is the isotropic tumbling time

and τe is an effective internal correlation time. The order
parameter S2 characterizes the amplitude of local motion:
S2 is equal to 1 for a completely restricted internal mo-
tion, while S2 is equal to 0 for an unrestricted internal
reorientation. We would like to emphasize that this order
parameter can be considered as an equilibrium average
and contains no information about the time scale of
internal dynamics. On the other hand, the effective corre-
lation time τi that describes the rapid internal motion
depends on both the microscopic diffusion or jump con-
stant and the spatial nature of the motion. All calcula-
tions were performed assuming isotropic overall tumbling
of the protein, which may be inferred from the ratio of
the principal components of the inertia tensor of RNase
T1 as calculated to be 1:1.14:1.27 from X-ray crystallo-
graphic data (Martinez-Oyanedel et al., 1991). Although
this model is frequently used to describe the motion of
the 15N-1H and 13Cα-1Hα bonds of the protein backbone,
it must be emphasized that its application is limited to
motions whose correlation function for the internal mo-
tion only decays following a single exponential (τi). This
type of motion is typical for residues in α-helix or β-sheet
secondary structures. For residues in loop regions it may
be necessary to extend this model in some cases by addi-
tional time scales for the internal dynamic behaviour.

In order to limit the number of fitting parameters, it
has been assumed that for all residues the flexibility of
the link between the carbonyl carbon and the 13Cα and
1Hα can be described by an order parameter (S2) of 0.8.
Since the order parameter for most of the protein back-
bone nuclei ranges between 0.6 and 1, the margin of
errors for the relaxation of the carbonyl carbons caused
by this approximation amounts to approximately 5%.
This assumption leads to a spectral density function of
the form JC'Cα(ω) = JC'Hα(ω) = (2/5)(0.8τc)/(1+(ωτc)

2) such
that the contribution of these dipole–dipole interactions
is only a function of τc. One of the advantages of the
carbonyl relaxation times in comparison to the 15N relax-
ation concerns their analysis. No numerical procedure is
necessary and the results can easily be represented be-
cause of the possibility to derive an analytical expression
for the microdynamical parameters S2 and τi. The details
of this calculation are described in the Appendix, and
only the solution is presented here. If the term for the
conformational exchange Rex is set to zero, then the ex-
pressions for the effective internal correlation times are
given by

τi,1 = τc (8a)

and for the order parameter by

S2 = 1 + b / (τc−τi) (9)

with

τi,1 is not a reasonable solution since the effective inter-
nal correlation time should be smaller than τc. Therefore,
τi,2 and τi,3 are the solutions of interest, assuming that they
are real (the radicant in Eqs. 8b and 8c has to be positive)
and that they lead to values larger than zero. From our
experience in analysing the carbonyl relaxation data of
RNase T1, one solution for τi is valid. If τi is known, the
order parameter S2 can be calculated using Eq. 9, whereas
a meaningful value is only attained if b is smaller than
zero (S2 must be smaller than 1). Obviously, some condi-
tions have to be fulfilled so that microdynamical parame-
ters can be calculated. Figure 7 shows a contour plot of
S2 (A) and τi (B) as a function of T1 and T2. For a combi-
nation of T1–T2 values which leads to a point inside the
hatched area (Fig. 7), a solution exists and the micrody-
namical parameters are directly derived. In case the com-
bination of T1–T2 values is located outside the hatched
area, no solution exists. For these cases it seems reason-
able to assume that either the applied model of motion is
not suitable or additional terms like conformational ex-
change terms have to be considered. Figure 7 also demon-
strates that the order parameter S2 is mainly determined
by the transverse relaxation time (contour lines are paral-
lel to the T1 axis in A) while the T1 values depend on the
value of the internal correlation time τi (contour lines are
parallel to the T2 axis in B).

Second level approach
In order to obtain a more detailed insight into the

dynamics of the protein backbone, a mapping of the
spectral density function for each carbonyl carbon was
tried. Therefore, we used Eqs. 6a and b and measured the
T1 and T2 relaxation times at the three different spectrom-
eter frequencies of 500, 600 and 800 MHz. This approach
leads to the following equation system:
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Fig. 8. Averages of relaxation rates depending on the static magnetic field strength. The calculated curve was obtained by fitting ρtrans to the
transverse relaxation rates using a simplex algorithm. The error of A0 and A1 was determined by a Monte Carlo simulation.

For the relaxation contributions of the dipole–dipole
interactions and the cross-correlation mechanism, the
same form of the spectral density function as in the first
level approach is applied: JC'Cα(ω) = JC'Hα(ω) = (2/5)(0.8τc)/
(1+(ωτc)

2). The five parameters J(0), J(ω125), J(ω150), J(ω200)
and Rex can then be calculated by minimizing the follow-
ing target function for each residue:

Results and Discussion

The average values for the 13C' longitudinal and trans-
verse relaxation times derived from the 2D spectra at 500,
600 and 800 MHz are presented in Fig. 8. While the T1

values vary only slightly with the strength of the magnetic
field, the transverse relaxation rate is nearly proportional
to ω2. Indeed, this agrees well with the theoretical con-
siderations since for high B0 fields the CSA relaxation

mechanism dominates and therefore a quadratic depend-
ence is expected (Eq. 1b). This increase of the line width
with the magnetic field strength should be considered in
the choice of a spectrometer frequency for NMR investiga-
tions, which use the carbonyl carbon as a relayed nucleus
or in an indirect evolution period. Since the resolution
increases only linearly with the spectrometer frequency,
the application of a reduced magnetic field strength may
be more reasonable, in particular for larger proteins with
short transverse carbonyl relaxation times. The nonzero
value at ω = 0 reflects the fact that a minor contribution
to the relaxation of the carbonyl carbon stems from di-
pole–dipole interactions and from the conformational
exchange term.

Results from the ‘first level approach’
In order to evaluate the parameters for the internal

dynamics, the overall correlation time τc has to be deter-
mined. Since only two relaxation rates for each B0 field
are available, the value of τc must be obtained from other
investigations. Recently we measured 13Cα relaxation times
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of the same sample, and from this study we obtained a
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Fig. 9. Values of 1−S2 for the backbone carbonyl carbons (A) and amide nitrogens (B) of ribonuclease T1 plotted versus the amino acid sequence
(Fushman et al., 1994; C. Ludwig, J. Engelke and H. Rüterjans, in preparation). The secondary structure elements are indicated with arrows.

value of τc = 4.9±0.3 ns. Although the viscosity of a D2O
sample should be about 20% larger than that of an H2O
sample, this value agrees well with the results from 15N
relaxation time measurements determined previously with
an H2O sample (Fushman et al., 1994). This agreement in
τc might be caused by the lower protein concentration in
the D2O sample compensating the higher viscosity of the
D2O. Using this value of τc, the order parameter and the
internal correlation time can be calculated using Eqs. 8
and 9. The corresponding contour plots are shown in Fig.
7.

In Fig. 9 the order parameters obtained from 13C' and
15N relaxation time measurements are plotted for the
amino acid sequence of ribonuclease T1. In order to allow
a direct comparison with other mobility parameters, (1−S2),
being the deviation of S2 from its complete restriction-
limit value and therefore increasing with an increase in
the amplitude of local motion, was chosen. From Fig. 9,

differences in the internal mobility are obvious between
the regions of regular secondary structure and the disor-
dered structural elements. Small and homogeneous ampli-
tudes of local motion were obtained for the residues be-
longing to the peripheral α-helix (residues 13–29), indi-
cating a highly restricted local mobility of this part of
the protein backbone. For the residues belonging to the
strands of the central antiparallel β-sheet (residues 40–42,
56–61, 75–81, 86–92 and 100–103) of RNase T1, a re-
stricted mobility for most of the residues was also ob-
served. However, the order parameter (1−S2) of some
residues in the β-sheet deviates considerably from that of
their neighbours. This is, in particular, the case for Trp59

and Ala87, for which long T2 relaxation times were deter-
mined (160 and 163 ms, respectively) resulting in order
parameters that are larger by a value of 0.2 than the
values for the adjacent residues. Figure 10 depicts the
neighbourhood of these residues. In both cases the dipole
field of an aromatic ring system is close to the carbonyl



75

carbon. Therefore, it seems reasonable to assume that this
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Fig. 10. The structural neighbourhood of Ala87 (A) and Trp59 (B) of ribonuclease T1. Details were obtained from the solution structure of
ribonuclease T1 determined by NMR spectroscopy (S. Pfeiffer, J. Engelke and H. Rüterjans, in preparation).
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Fig. 11. Spectral density samplings for four residues as a function of frequency in MHz. The four sampling frequencies occur at 125, 150 and 200
MHz and at 3000 Hz. The spectral density function of Lipari and Szabo was fitted to the sample frequencies using the Levenberg–Marquardt
algorithm.

effect may influence the component of the CSA tensor
that is perpendicular to the peptide plane. Since the relax-
ation rates are proportional to the product d2

CSAS2, a de-

crease of only 20 ppm of δzz, which changes the value of
the anisotropy constant d2

CSA by 25% (4.6 × 10−9), would
explain the observed change in the order parameters. As
mentioned before, at this point the uncertainty of the
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CSA tensor for proteins in solution complicates the inter-
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Fig. 12. Values of Rex for the backbone carbonyls plotted versus the amino acid sequence.

pretation of the relaxation data. However, this effect can
also be used as additional information: if the amplitude
for the internal mobility is known from other investiga-
tions, conclusions can be drawn with respect to the aniso-
tropy constant.

From a comparison of the order parameters 1−S2 de-
rived from 13C' and 15N relaxation time measurements, a
difference of 0.11 of the corresponding average values
becomes apparent. This difference may be a consequence
of the not exactly known values of the anisotropy con-
stant or, as shown below, the different interpretation of
the order parameters. However, the planarity of the pep-
tide plane leads to similar order parameters for some
residues: the carbonyl carbon of Asp49 forms a peptide
plane with the amide group of Phe50, and for both resi-
dues large values for 1−S2 were observed. The next pep-
tide plane is more restricted, as indicated by small 1−S2

values for Phe50 (13C') and Ser51 (15N). Contrary to this
behaviour, the peptide plane formed by Ser51 (13C') and
Val52 (15N) is connected with larger values of 1−S2. In
addition, the correspondence of the correlations is also
obvious for the loop between Thr93 and Asn99. This region
is involved in the binding of the substrate and the com-
petitive inhibitors of ribonuclease T1 and its increased
mobility seems to be important for the activity. However,
the correlation within the peptide plane cannot be con-
firmed for all residues. This difference of order parame-
ters may be explained by the principal difference between
the two relaxation mechanisms. Since the dominant relax-
ation mechanism for 15N is the dipole–dipole relaxation,
whereas for the carbonyl carbon it is the CSA relaxation,
the interpretation of the order parameters is quite differ-
ent. In the case of the dipole–dipole interaction the order

parameter S2 describes the difference of the mobility of
the covalently linked 1HN and 15N nuclei. Therefore, in
reality, from 15N relaxation time measurements one does
not obtain the dynamics of the backbone nuclei but
rather the motion of the 1HN-15N bond. The relaxation of
the carbonyl carbon is caused predominantly by the CSA
mechanism or, more precisely, by the motion of the CSA
tensor in the static magnetic field B0. For a rigid molecule
the motion of the CSA tensor is determined by the over-
all correlation time τc and the order parameter is equal to
one. Since the CSA tensor is linked to the carbonyl car-
bon, an additional internal flexibility of this nucleus leads
to a decrease in the value of S2. Therefore, the order par-
ameter derived from carbonyl carbon relaxation times is
a direct measure of the motion of this backbone nucleus.

In order to confirm these considerations, the internal
correlation times derived from 15N and 13C' relaxation
time measurements will be compared. For RNase T1 an
average value of 42 ps for τi has been calculated using 15N
relaxation data. The magnitude of this value agrees well
with the results from other studies, e.g. on calmodulin
(〈τi〉 = 30 ps, τc ≈ 6.7 ns; Barbato et al., 1992) and on
FK506 binding protein (〈τi〉 ≤ 30 ps, τc = 9.2 ns; Cheng et
al., 1993). Contrary to these values for the internal corre-
lation time of the carbonyl carbons, an average value of
350 ps has been obtained for τi from carbonyl carbon
relaxation data. Even if the interpretation of τi is prob-
lematic, the difference of 1 order of magnitude in τi seems
to confirm the above outlined interpretation.

Results from the second level approach
Using the second level approach, a mapping of parts

of the spectral density function can be achieved for those
residues for which both relaxation rates at the three dif-
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ferent spectrometer frequencies 500, 600 and 800 MHz
are available. In addition, this analysis provides a value
for the conformational exchange parameter Rex. Although
the spectral densities of different models for the internal
motion can be fitted to the experimental values, we ap-
plied the model of Lipari and Szabo also for this second
level approach for comparison. In order to determine the
overall correlation time τc using only the carbonyl carbon
relaxation times, the well-known procedure for analysing
15N relaxation times is applied: τc was changed stepwise
assuming one value for all residues while the parameters
for internal motion were fitted to the spectral density
function values for each residue using a numerical optimi-
zation procedure. Finally, that value of τc which mini-
mizes a target function Ψ2 and the corresponding values
for S2 and τi were chosen as the best values. From this
analysis a value of 4.6 ± 0.4 ns for τc was obtained, which
agrees well with that calculated from 13Cα and 15N relax-
ation times. The result of the analysis is shown for some
residues in Fig. 11. The values for the conformational
exchange are shown in Fig. 12. The fact that the average
value of Rex is not zero may be an indication that all
carbonyl nuclei undergo a motion with a small amplitude
on a slow time scale. But it is also possible that either
further dipole–dipole interactions between 13C' and 1H
have to be considered or that the anisotropy constant has
to be modified for proteins in solution. However, for
residues with an exchange parameter larger than the
average value plus one standard deviation, a real confor-
mational exchange may be assumed. For some of these
residues (Ser13, Asn36, Asn43) no internal parameters were
obtained from the first level approach, since their T1–T2

combination leads to a point outside the hatched area in
Fig. 7. Therefore, the dynamics of these residues can be
characterized by the superposition of a fast motion in the
picosecond–nanosecond range and a slow motion on the
microsecond time scale. The large values of the exchange
parameter of the adjacent amino acids Asn43 and Asn44

seem to be an indication for a coordinated motion of this
part of the polypeptide chain. Both residues are located
in the active site of the enzyme. Larger values for the
exchange parameters were also derived from 15N relax-
ation time measurements.

Conclusions

It was possible to describe the backbone dynamics of
ribonuclease T1 using 13C' relaxation measurements. Since
the CSA mechanism dominates the relaxation of the
carbonyl carbon, the microdynamical parameters are a
direct measure for the motion of the backbone. Highly
restricted motions are found for most of the secondary
structure elements while the loop regions are more or less
disordered and flexible. Although the internal correlation
time τi is about 1 order of magnitude larger than that of

the corresponding 15N relaxation time measurements, a
good agreement of the order parameters for many resi-
dues was found. However, in some cases deviations were
observed, which were also observed in a similar study of
Dayie and Wagner (1995). Nevertheless, the investigations
of the relaxation behaviour of both nuclei are certainly
useful for a better understanding of the dynamics of the
protein backbone.
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Appendix

0 Substituting the expressions for the spectral density
function of the carbonyl carbon and of the 13C'-13Cα in-
teraction into Eqs. 6a and 6b, one obtains

From Eq. A2, S2 as a function of τi can be derived:
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‘A’ depends only on the measured relaxation rates and
the values for ρC'Cα(τc) and ρcross, which are known for a
given overall correlation time τc. When this expression is
substituted back into Eq. A1, a relation for the effective
internal correlation time is achieved which depends only
on T1 and T2. Unfortunately, this equation is of third
order in τi:
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with B = (5/2d2
CSAω2

C)((1/T1)−ρ1
C'Cα−ρ1

cross). In order to
arrive at a solution for τi the formalism of Cardano
(Bronstein and Semendjajew, 1985) can be used, but this
treatment is difficult and time-consuming. Because of the
symmetry of the spectral density function of 13C', the first
solution can be assumed to be τi,1 = τc. Then a polynomial
division leads to an equation of second order in τi and its
solutions are given by Eqs. 8b and 8c.


